INTEGRATION

1 Show that

$$
\begin{equation*}
\int_{2}^{7} \frac{8}{4 x-3} \mathrm{~d} x=\ln 25 \tag{4}
\end{equation*}
$$

2 Given that $y=\frac{\pi}{4}$ when $x=1$, solve the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=x \sec y \operatorname{cosec}^{3} y \tag{7}
\end{equation*}
$$

3 a Use the trapezium rule with three intervals of equal width to find an approximate value for the integral

$$
\begin{equation*}
\int_{0}^{1.5} \mathrm{e}^{x^{2}-1} \mathrm{~d} x \tag{4}
\end{equation*}
$$

b Use the trapezium rule with six intervals of equal width to find an improved approximation for the above integral.

4

$$
\begin{equation*}
\mathrm{f}(x) \equiv \frac{3(2-x)}{(1-2 x)^{2}(1+x)} \tag{4}
\end{equation*}
$$

a Express $\mathrm{f}(x)$ in partial fractions.
b Show that

$$
\begin{equation*}
\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x=1-\ln 2 \tag{6}
\end{equation*}
$$

5 The rate of growth in the number of yeast cells, N, present in a culture after t hours is proportional to N.
a By forming and solving a differential equation, show that

$$
\begin{equation*}
N=A \mathrm{e}^{k t} \tag{4}
\end{equation*}
$$

where A and k are positive constants.
Initially there are 200 yeast cells in the culture and after 2 hours there are 3000 yeast cells in the culture. Find, to the nearest minute, after how long
b there are 10000 yeast cells in the culture,
c the number of yeast cells is increasing at the rate of 5 per second.
6

The diagram shows part of the curve with equation $y=\frac{1}{\sqrt{2 x+1}}$.
The shaded region is bounded by the curve, the coordinate axes and the line $x=4$.
a Find the area of the shaded region.
The shaded region is rotated through four right angles about the x-axis.
b Find the volume of the solid formed, giving your answer in the form $\pi \ln k$.

7 Using the substitution $u^{2}=x+3$, show that

$$
\begin{equation*}
\int_{0}^{1} x \sqrt{x+3} \mathrm{~d} x=k(3 \sqrt{3}-4) \tag{7}
\end{equation*}
$$

where k is a rational number to be found.
8 a Use the identities for $\sin (A+B)$ and $\sin (A-B)$ to prove that

$$
\begin{equation*}
2 \sin A \cos B \equiv \sin (A+B)+\sin (A-B) . \tag{2}
\end{equation*}
$$

The diagram shows the curve given by the parametric equations

$$
x=2 \sin 2 t, \quad y=\sin 4 t, \quad 0 \leq t<\pi .
$$

b Show that the total area enclosed by the two loops of the curve is given by

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} 16 \sin 4 t \cos 2 t \mathrm{~d} t \tag{4}
\end{equation*}
$$

c Evaluate this integral.

9

$$
\begin{equation*}
\mathrm{f}(x) \equiv \frac{x^{2}-22}{(x+2)(x-4)} \tag{5}
\end{equation*}
$$

a Find the values of the constants A, B and C such that

$$
\begin{equation*}
\mathrm{f}(x) \equiv A+\frac{B}{x+2}+\frac{C}{x-4} . \tag{3}
\end{equation*}
$$

The finite region R is bounded by the curve $y=\mathrm{f}(x)$, the coordinate axes and the line $x=2$.
b Find the area of R, giving your answer in the form $p+\ln q$, where p and q are integers.
10 a Find $\int \sin ^{2} x d x$.
b Use integration by parts to show that

$$
\int x \sin ^{2} x \mathrm{~d} x=\frac{1}{8}\left(2 x^{2}-2 x \sin 2 x-\cos 2 x\right)+c,
$$

where c is an arbitrary constant.

The diagram shows the curve with equation $y=x^{\frac{1}{2}} \sin x, 0 \leq x \leq \pi$.
The finite region R, bounded by the curve and the x-axis, is rotated through 2π radians about the x-axis.
c Find the volume of the solid formed, giving your answer in terms of π.

